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ABSTRACT
Medical doctors may struggle to diagnose dementia, particularly when clinical test
scores are missing or incorrect. In case of any doubts, both morphometrics and
demographics are crucial when examining dementia in medicine. This study aims to
impute and verify clinical test scores with brain MRI analysis and additional
demographics, thereby proposing a decision support system that improves diagnosis
and prognosis in an easy-to-understand manner. Therefore, we impute the missing
clinical test score values by unsupervised dementia-related user-based collaborative
filtering to minimize errors. By analyzing succession rates, we propose a reliability
scale that can be utilized for the consistency of existing clinical test scores.
The complete base of 816 ADNI1-screening samples was processed, and a hybrid set
of 603 features was handled. Moreover, the detailed parameters in use, such as the
best neighborhood and input features were evaluated for further comparative
analysis. Overall, certain collaborative filtering configurations outperformed
alternative state-of-the-art imputation techniques. The imputation system and
reliability scale based on the proposed methodology are promising for supporting the
clinical tests.

Subjects Cognitive Disorders, Geriatrics, Data Mining and Machine Learning, Data Science
Keywords Clinical test scores, Dementia, Imputation, Incomplete data, Missing values, Reliability
scale, User-based collaborative filtering

INTRODUCTION
Neuropsychiatric disorders, also known as dementia diseases, are among the most critical
aging problems. During medical check-ups, brain scans, particularly some clinical test
scores, are considered. Hence, corrupted medical images or missing information can cause
faulty decisions during the diagnostic process (Liu et al., 2018).

The clinical diagnostic process emerges from the patient’s physical examination, and if
necessary, mini-mental tests are applied. These tests should be organized with the support
of a psychologist in a specially prepared environment outside the polyclinic, with sufficient
time spared. Otherwise, erroneous results may be obtained. Nevertheless, a specially
prepared inspection environment and psychologist support cannot be provided by some
medical centers because of the vast number of patients. In this direction, medical doctors
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have expressed the need for a reliability check of mini-mental test scores using
computer-aided methods. If the test scores are questionable, the MRI analysis becomes
more critical. Therefore, the decision to treat neuropsychiatric disorders is based on
mini-mental tests and visual inspection of the MRI scans.

In neuroimaging science, an unknown diagnosis of dementia is determined mainly
through MRI-based neuroanatomical studies. A touchstone book in the literature shows
that the dementia work-up is not complete without MRI (Becker & Giacobini, 1990).
Likewise, markers derived from structural MRI scans can be considered as aids in clinical
decision-making and treatment development (Sabuncu & Konukoglu, 2015). However,
current state-of-the-art MRI machines cannot directly measure a certain region on
brain scans in terms of volume, surface area, etc. The output files of scheduled scanning
studies can be processed using computer-aided systems by applying image processing
techniques or managing software tools. FreeSurfer (Fischl, 2012) is one of the most suitable
open-source brain analysis tools that takes advantage of MRI. Virtual brain construction
from scans and obtaining statistical measurements, that is, morphometric features of
particular brain segments, are the most prominent practices. Processing such features
with learning algorithms can change or improve the medical horizon to interpret
manifestations and paroxysms. Moreover, employing additional demographics may
enhance the entire algorithm. Gender, age, and most importantly, the test scores of clinical
questionnaires such as mini-mental state examination (MMSE), geriatric depression scale
(GDS), clinical dementia rating (CDR), neuropsychiatric inventory questionnaire (NIQ),
functional assessment questionnaire (FAQ) can be exemplified within the scope of
demographics.

Any sample with incomplete data is a limitation in data science, and preprocessing
the data containing missing values is a crossroads for any study. Information may be
missing completely at random, missing at random, or missing not at random (Jabason,
Ahmad & Swamy, 2018). Ignoring the corresponding incomplete samples and filling
sparsity have their own advantages and disadvantages. Discarding the samples is the easiest
solution. Nevertheless, this option reduces the number of samples (Zhou et al., 2019a) and
further learning complications may occur. On the other hand, the filling phase can be
extremely costly (Cruz et al., 2020), and it might not have been accomplished accurately.
Basically, in the discarding option, a significant amount of convenient data vanishes
intentionally, and in the imputation option, additional noise can be inserted into the
information (Liu et al., 2018). Consequently, instead of discarding any samples, it is
necessary to fill in the missing data in the most appropriate theoretical manner.
Thereby, any minor data that are not ignored can be benefited the learning algorithm.

The reliability scale can be defined as the relevance between the clinical test score and
computer-aided generated value. An acceptable difference between the two is expected to
generate a scale. If the difference is smaller than a threshold, the clinical test score is
considered reliable. The focus is on setting this threshold. To the best of our knowledge, no
comparable research has generated a proper threshold on computer-aided clinical brain
activity test score. However, a confidence interval is based on sampling the distribution of a
parameter (Dekking et al., 2005). The most widely utilized (Zar, 1999) two-sigma
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methodology in statistics, which provides a reasonable confidence level of approximately
95% (Pukelsheim, 1994; Coory, Duckett & Sketcher-Baker, 2008), might yield remarkable
results in terms of reliability scaling.

Table 1 presents a reliability scale example with scores randomly taken from the
analyses. In addition to the aforementioned actual and predicted values, the ratio of
the absolute difference between the clinical test score and computer-aided prediction to the
test score range provides the error percentage. The last column, reliability, indicates
whether the corresponding clinical test score value is acceptable. If not trusted, all tests
should be re-run from the start.

This research has two aims:
The first aim was to impute the missing clinical test scores. Therefore, we focused on

providing critical clinical test score values by transforming the MRI measurements and
additional information. An unsupervised dementia-related user-based collaborative
filtering (DUCF) missing-value imputation methodology with detailed parameter settings
was proposed. Because this is an unsupervised algorithm, its objective is to reveal the
relationships between morphometrics and demographics to verify the clinical test
scores independently of the dementia type. Both feature forms, morphometrics, and
demographics, used in clinical diagnostics, were processed individually and as a hybrid
combination; then, the enhancement of the results was examined. Similar samples were
detected by elaborative test configurations using various features, and the best neighbor
count (BNC) was examined in terms of minimizing errors. In the final stage, the
imputation values, that is, predictions, were stored as the weighted average of the test
scores through similarity. The validation performance of the DUCF configurations as an
alternative imputation technique was comparatively measured. The results are promising,
and certain DUCF configurations outperformed other state-of-the-art imputation
techniques.

The second aim was to generate a reliability scale for clinical test scores. In this context,
the measured values of brain sections extracted from MRI scans were transformed into a

Table 1 Reliability scale results example.

Clinical test type Range Clinical test score Computer-aided
prediction

Absolute error
percentage§

Reliability

MMSE [0, 30] 20 22.555 8.52 not trusted

MMSE [0, 30] 21 26.469 18.23 not trusted

MMSE [0, 30] 28 27.977 0.08 trusted

GDS [0, 12] 0 0.662 5.52 trusted

GDS [0, 12] 2 2.01 0.08 trusted

GDS [0, 12] 5 1.335 30.54 not trusted

CDR [−1, 3] 0.5 0.5 0 trusted

CDR [−1, 3] 0.5 0.552 1.3 trusted

CDR [−1, 3] 1 0.166 20.85 not trusted

Note:
§ Absolute Error Percentage = |Clinical Test Score − Computer-Aided Prediction| / Range
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chart similar to mini-mental test results, and the margin between these values and
clinical test results was calculated. The corresponding predefined threshold with a 95%
confidence level was then calculated for each clinical test. We refer to this threshold as the
reliability scale. A smaller error on the reliability scale implies more accurate clinical test
results. If the difference between the predicted and clinical test score values exceeds the
reliability scale, clinical tests should be repeated. Thus, medical doctors can easily interpret
processed values based on measurements instead of visually inspecting the MRI scans.

Overall, the following highlights are presented in this research.

� An unsupervised missing value imputation methodology, DUCF with configurations, is
proposed to impute missing clinical brain activity test scores.

� There is no comparable brain research in the medical informatics and neuroimaging
fields in which collaborative filtering imputation has been inspected in-depth.

� A reliability scale for clinical brain activity test scores is proposed.

� The reliability scale is expected to prevent erroneous future decisions.

� To the best of our knowledge, no comparable research has generated a reliability scale on
computer-aided clinical brain activity test score.

� The effect of utilizing additional FreeSurfer morphometrics on collaborative filtering is
demonstrated.

� Different normalization strategies were implemented to optimize the data.

The remainder of this study is organized as follows. The “Related work” subsection
exemplifying similar studies on state-of-the-art methods is given next. In the “Materials
and Methods” section, the dataset containing missing values is first described.
Subsequently, the imputation methodology in terms of the missing-value concept and
the corresponding configurable parameters are addressed. After analyzing the tests and the
outcomes in the “Imputation Tests and Results” section, the conclusion and future plans
are indicated in the “Conclusion” section.

Related work
Considering the medical informatics and neuroimaging fields, incomplete datasets with
diversified modalities are processed using methods such as incomplete source-feature
selection (iSFS) (Liu et al., 2018), incomplete multiview weak-label learning (iMVWL)
(Zhou et al., 2019b), doubly aligned incomplete multiview clustering (DAIMC) (Zhou
et al., 2019a, 2019b), and incomplete multi-source feature (iMSF) (Liu et al., 2018; Zhou
et al., 2019a, 2019b). Some studies use incomplete multimodality data, and missing data
recovery is one of the main purposes (Zhou et al., 2019b; Zhu et al., 2017; Thung et al.,
2015; Thung, Yap & Shen, 2018). The model can generate the missing modality by taking
the existing modality as input (Cai et al., 2018), such as any missing neuroimaging data
(Zhou et al., 2019a, 2020) or different multimodalities, for example, positron emission
tomography (Liu et al., 2018). Rather, Abdelaziz, Wang & Elazab (2021) fills missing
features for each incomplete multimodal sample using convolutional neural networks.
In recent research, a deep learning framework combining a task-induced pyramid and
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attention generative adversarial network with a pathwise transfer dense convolution
network for imputation was proposed, and the missing positron emission tomography
data were rendered with their MRI. Utilizing the imputed multimodal images, a dense
convolution network was built for disease classification (Gao et al., 2022). Liu et al.
(2022) proposed generative adversarial and classification networks to synthesize missing
images, generate multimodal features, and conversion prediction. However, only one
modality can have its own sparseness. For instance, structural MRI imputation focus can
be through ROIs (Collazos-Huertas, Cardenas-Pena & Castellanos-Dominguez, 2019).
The lack of pixels/voxels in the brain scans was corrected using FreeSurfer v5.3.0 by Cruz
et al. (2020). Block-wise missing data were integrated in Xue &Qu (2020). Feature selection
and classification techniques were applied to extract feature matrices from incomplete
multimodal high-dimensional data by filtering certain non-sparse data and discarding
some column-wise missing values by Deng, Liu & Dong (2018). Considering how accurate
it is to shrink the information, that is, wasting the samples, the emphasis of an imputation
methodology aiming at increasing efficiency was revealed.

Some straightforward but occasionally effective simple imputation approaches, such as
zero value (Liu et al., 2018; Zhou et al., 2019a, 2020; Campos et al., 2015), attribute mean
(Jabason, Ahmad & Swamy, 2018; Cruz et al., 2020; Campos et al., 2015), attribute
winsorized mean (Campos et al., 2015), and attribute median (Campos et al., 2015), stand
out to fill the missing values in a dataset. Advanced methods with higher time complexity,
require computational performance, such as expectation maximization (EM) (Liu et al.,
2018), regularised expectation maximisation (RegEM) (Campos et al., 2015), low-rank
matrix completion (LRMC) or approximation (Zhou et al., 2019a; Cruz et al., 2020;
Zhou et al., 2019b; Thung et al., 2015), matrix shrinkage and completion (MSC) (Liu et al.,
2018; Zhou et al., 2019a), and multiple imputation using denoising autoencoders (MIDA)
(Jabason, Ahmad & Swamy, 2018) were also encountered on imputing missing values.
Examples of deep learning methods can also be noticed, for example, research on
forwarding, linear, and model filling using RNN by Nguyen et al. (2020). Moreover, there
are also studies on KNN (Liu et al., 2018; Jabason, Ahmad & Swamy, 2018; Zhou et al.,
2019a; Cruz et al., 2020; Zhou et al., 2019b; Zhou et al., 2020; Campos et al., 2015),
which include distance measurement approaches. However, imputation methods, such as
KNN and LRMC, work efficiently when a small portion of the data is missing, and the
overall performance declines if the sparsity is high (Zhou et al., 2019b).

Considering the missing clinical brain activity test scores and reliability scale on
computer-aided clinical test score, there is limited related work to validate actual clinical
test scores and/or value imputations. A machine learning approach was proposed to
statistically impute cognitive test scores across different datasets for data harmonization.
This statistical analysis of normalized scores yields data distributions and allows outcomes
from theoretically identical tests (Shishegar et al., 2021). Missing clinical test scores at
multiple time points were predicted through deep and joint learning by Lei et al. (2020);
the absent information was imputed by associating the monthly check values of the
corresponding patient with the regression framework. One of the objectives ofMehta et al.
(2022) is to develop an accurate model to predict Alzheimer’s disease clinical scores by
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embedding uncertainty estimates across cascaded inference tasks; however, the research
was conducted in brain tumor segmentation, and there was no imputation discussion.
Abdelaziz, Wang & Elazab (2021) estimated clinical test scores using supervised
convolutional networks as a regression task for various binary diseases and statistically
discussed the correlations between the estimated and the actual scores.

Although there are similar studies related to the analysis of frequency of daily living
activities with big data using collaborative filtering (Moldovan et al., 2018) or computing
cohorts’ similarity with recommender systems (Almeida et al., 2020), there is no
comparable brain research in neuroimaging and medical informatics fields, in which
recommender systems methodologies or collaborative filtering are inspected in-depth in
terms of imputation and/or generating a reliability scale on computer-aided clinical test
score.

MATERIALS AND METHODS
A flowchart of the methodology is shown in Fig. 1. The steps in the graphical
representation are detailed in the following subsections.

Data collection
Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu, ADNI1Complete1Yr1.5T).

Figure 1 Graphical flowchart of the methodology. Full-size DOI: 10.7717/peerj.13425/fig-1
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The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see adni-info.org.

The screening scheduling and sparse clinical test score information of the dataset
containing 2,291 samples are listed in Table 2. Each row indicates the screening schedule of
the brain imaging study, and the columns list the number of corresponding studies and
the existence of various clinical test scores. To ignore the impact of continuing screening of
any sample during imputation, the analysis of missing critical test score values was
evaluated using the complete base ADNI1 Screening data. The score ranges of the
clinical tests in the dataset, the minimum and maximum values, vary within themselves:
[8, 30] for MMSE, [0, 12] for GDS, [−1, 3] for CDR, [0, 29] for NIQ, and [0, 30] for FAQ.
Normalized values were used to equalize the scoring scale.

Feature extraction
Statistical data, that is, morphometrics, from raw brain scans were obtained using
FreeSurfer, and a parallel feature extraction study was reported by Okyay & Adar (2018).
Except for 816 samples within the base data, the rest did not survive the virtual brain
construction process.

The initial feature set included two subparts: morphometrics and demographics.
The former consisted of 594 structural MRI attributes after filtering specific FreeSurfer-
stats1 containing keywords, such as general, volumemm3, area, thickavg, grayvol, nvoxels,
numvert, and nvertices. Some factors may have a negligible impact on the process.
Regardless, all morphometric attributes were included in the initial feature set to boost the
interaction between features. The latter provided by ADNI-XMLs was added to the initial
feature set after manually eliminating insignificant attributes, such as weight and some
referrals. The selected demographics contained nine attributes, namely, sex, age, apoE-A1,
and apoE-A2, and the five clinical test scores in Table 2. Therewith, it yielded a total of
603 features2 for 816 samples. A brief list of the aforementioned initial feature set is
presented in Fig. 2.

Preprocessing
Row- and column-based anomalies in the morphometrics were automatically ignored.
The morphometric features in both the right and left parts of the brain were averaged.

Table 2 Screening schedule and clinical test score sparsity relationship.

Screening schedule Sample count MMSE GDS CDR NIQ FAQ

ADNI1 Screening 828 ✓ ✓ ✓

ADNI1/GO Month 6 753 ✓ ✓ ✓ ✓

ADNI1/GO Month 12 710 ✓ ✓ ✓ ✓ ✓

1 Achieving a successful virtual brain
construction process creates not only 3D
models but also textual-based files com-
prising the numerical statistics of brain
regions.

2 The complete list of the features,
including the details of preprocessing, is
attached to the AllFeaturesList tab in the
supplementary material available at
GitHub: https://github.com/savasokyay/
Dementia-Related-User-Based-
Collaborative-Filtering/blob/main/
supplementaryMaterial-DUCF.xlsx.
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Additionally, each feature or feature group in the dataset was functionally normalized to
the range of [0, 1] using several techniques suitable for the keywords through the
normalization package. The volume characteristics were normalized by the skull volume
attribute (EstimatedTotalIntraCranialVol), and the gray volumes were normalized by the
total gray volume attribute (TotalGrayVol). The min-max normalization method was
applied to the remaining attributes, except for those that should not be normalized or
require special processing, such as nominal features. During the preprocessing step,
FS-DPMT v1.0615 by Okyay, Adar & Kaya (2020) and MATLAB R2020b were utilized.

Imputation
Other imputation techniques
The proposed methodology was compared with state-of-the-art zero value, attribute
mean, attribute winsorized mean, attribute median, RegEM, and LRMC methods
mentioned in the introduction section. The KNNmethod encountered in the literature was
included in the tests within the DUCF scope, detailed with the parameter analysis and
configuration.

Dementia-related user-based collaborative filtering
The proposed DUCF imputation design was unsupervised, therefore it was not affected by
class differences, thus, conducted a pure analysis by interacting attributes in the most
exposed manner. The methodology consisted of two stages: calculating user-based
similarities and predicting missing values.

User-based similarity weights, w, were obtained using five equations commonly used in
recommender system terminology and collaborative filtering methodology. These are
correlation-based (Choi, Cha & Tappert, 2010) Pearson Correlation Coefficient (PCC)

Figure 2 Brief list of the initial feature set. Full-size DOI: 10.7717/peerj.13425/fig-2
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(Polatidis & Georgiadis, 2016; Shi, Larson & Hanjalic, 2014) in Eq. (3.1), Median-based
Robust Correlation coefficient (MRC) (Shevlyakov, 1997; Shevlyakov & Smirnov, 2011) in
Eq. (3.2), COSine similarity (Adomavicius & Tuzhilin, 2005) in Eq. (3.3), and distance-
based (Choi, Cha & Tappert, 2010) MANhattan distance similarity (MAN) in Eq. (3.4),
and EUClidian distance similarity (EUC) in Eq. (3.5). The details are summarized in
Table 3, where x and y are the sample vectors, and �x and ~x are the corresponding mean and
median of x, respectively. The maximum correlation is denoted by +1, while negative ones
end up through −1 in the range of [−1, +1]. Likewise, because distance is a negating factor,
the computed inverse proportional similarity weight became a positive value. Although
rare conditions exist when the same vector values coincide in the similarity calculation, the
distance-based weight was infinite. In this case, the highest similarity computed as a real
number was assigned to the corresponding value.

In the prediction stage, patients were filtered to the most similar neighbors with higher
similarity weights. Then, the prediction, p, for any missing test score value was computed
over the weighted average formulation, as in Eq. (3.6), where w� is the weights for one of
the similarity equations, x is the patient-of-interest, cs represents the clinical test score
type, y. contains vectors sorted by one of the similarity equations, and BNC describes the
top-N similar patients that took place in the computation.

Table 3 Similarity weight and prediction equations in practice.

Stage (type) Name Equation

Similarity
(corr.)

Pearson Correlation
Coefficient

wPCC
x;y ¼

Pn
i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � �xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � �yÞ2
q (3.1)

Similarity
(corr.)

Median-Based Robust
Correlation

wMRC
x;y ¼

Pn
i¼1ðxi � ~xÞðyi � ~yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � ~xÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � ~yÞ2
q (3.2)

Similarity
(corr.)

Cosine Similarity
wCOS
x;y ¼

Pn
i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyiÞ2
q (3.3)

Similarity
(dist.)

Manhattan Distance
Similarity

wMAN
x;y ¼ 1=

Xn

i¼1
jxi � yij

� �
(3.4)

Similarity
(dist.)

Euclidian Distance
Similarity

wEUC
x;y ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðxi � yiÞ2

q� �
(3.5)

Prediction
(avg.)

Weighted Average
px;cs ¼

PBNC
y.¼1 y

.
cs � w�

x;y.PBNC
y.¼1 w

�
x;y.

(3.6)
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IMPUTATION TESTS AND RESULTS
The performance of all imputation techniques covered in the test procedure, including
DUCF, was evaluated by eliminating partial data. Each clinical test score attribute in
demographics was emptied for 250 randomly selected samples3 as illustrated in Fig. 3.
Hence, an independent test procedure is based on a stochastic behavior, that is, the
principle of working with random values. Therefore, the procedure was repeated 100 times
to optimize the randomness effect and provide stable outcomes. The average of all
individual test results is reported for all approaches.

For each missing clinical test score value when applying DUCF, leave-one-out cross-
validation was performed. The similarities between the sample of interest and all other
instances were found in the first stage through all independent test combinations. A DUCF
test combination consisted of five unique similarity equations, varying BNCs (from one
to 100 incremented by one), and three types of feature vectors. Therefore, morphometrics
and demographics within the initial feature set were included in the tests in the following
three forms.

1. Only morphometrics: 594 features from FreeSurfer stats.

2. Only demographics: nine features from the ADNI XMLs.

3. Hybrid set: a total of 603 features.

Figure 3 Illustration of the data elimination and imputation operations in the test procedure. The figure represents the actual values of the first
25 samples in a randomly selected independent test scenario. (A) The non-green vertical lines indicate the columns of the non-sparse clinical test
score attributes. (B) The zoomed-in representation of corresponding vertical column values is shown. (C) The bordered red cells indicate that the
related values are randomly emptied. (D) The bordered light green cells indicate that the missing values are imputed.

Full-size DOI: 10.7717/peerj.13425/fig-3

3 A complete imputation example showing
the sparse matrices for both selected test
samples and imputed values is provided
in the ImputationExample tab of the
supplementary material available at
GitHub: https://github.com/savasokyay/
Dementia-Related-User-Based-
Collaborative-Filtering/blob/main/
supplementaryMaterial-DUCF.xlsx.
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Actual values define the ground truth, regardless of the initial feature set and
methodology. Imputed values, that is, predictions, were obtained by applying imputation
techniques. The two matrices, the actual and imputed values, are of the same size and have
identical sparsity3, in which the same indices are filled.

In this study, actual clinical test scores and estimated imputation values were statistically
compared. For this purpose, the correlation results for all individual tests were computed,
analyzed, and given in the supplementary material4. Moreover, paired-samples t-tests
were deliberately performed for the selected important test configurations, where the
trusted and moderate thresholds for the reliability scale were mainly determined. Full
statistical reports are also included4 in the supplementary material.

It is mentioned in the study that imputation tests were executed many times for the
same configuration. The weakest imputation set of the relevant test configuration, most
outlying the mean, was selected as a case example. This is because other executions would
theoretically produce adequate results. The statistical results for two5 of the selected
important configurations are reported below.

1. Results of the correlation analysis indicated that there was a significant positive
association between clinical test scores and DUCF imputation (r(750) = 0.934,

p < 0.000). A paired-samples t-test was conducted, and there was no significant
difference between actual clinical test scores (M = 0.44, SD = 0.327) and estimated
imputation values (M = 0.444, SD = 0.34); t(749) = −0.904, p = 0.366.

2. Results of the correlation analysis indicated that there was a significant positive
association between clinical test scores and RegEM imputation (r(750) = 0.960,

p < 0.000). A paired-samples t-test was conducted, and there was no significant
difference between actual clinical test scores (M = 0.448, SD = 0.329) and estimated
imputation values (M = 0.443, SD = 0.316); t(749) = 1.529, p = 0.127.

After statistical analyses between the actual and predicted values, all tested missing
value imputation approaches were evaluated using these two value sets over error and
regression metrics as mean absolute error (MAE) in Eq. (4.1), mean squared error (MSE)
in Eq. (4.2), root mean squared error (RMSE) in Eq. (4.3), and r-squared (R2) in Eq. (4.4).
Lower values are important for the error metrics. A higher value of R2 indicates a
better prediction accuracy. The performance metric formulations are listed in Table 4,
where x and y are the actual and imputed values, respectively.

The internal configurations and optimal parameters of the DUCF imputation
methodology are shown in Fig. 4. The grid-type figure contains 12 subplots (3 × 4: three
rows and four columns) containing various test and evaluation parameters. Each row of
the subplots matches the initial feature set enumeration. Each column was settled based
on the performance metrics in Eqs. (4.1)–(4.4). For all subplots, the x-axis defines the
corresponding BNC in each independent test, while the y-axis represents the performance
metric outcome. The most applicable DUCF technique was inferred by interpreting the
configurations.

4 Correlation details and full statistical
reports for paired-samples t-tests can be
found in the correlations and full-
StatisticalReports tabs of the supple-
mentary material available at GitHub:
https://github.com/savasokyay/
Dementia-Related-User-Based-
Collaborative-Filtering/blob/main/
supplementaryMaterial-DUCF.xlsx.

5 The supplementary material available at
GitHub: https://github.com/savasokyay/
Dementia-Related-User-Based-
Collaborative-Filtering/blob/main/
supplementaryMaterial-DUCF.xlsx
stores these outcomes in the full-
StatisticalReports tab, labeled as (1)
DUCF_2W and (2) RegEM_4W.
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Considering the similarity equation-type perspective, the plot lines seem to be
commonly clustered, in which the black and red lines are separated from the others.
Although correlation-based similarities produce similar effects, distance-based similarities
perform precisely well for all performance metrics when efficient features are selected.

Table 4 Performance metric formulations in practice.

Name Formula

Mean Absolute Error
maeðx; yÞ ¼ 1

n

� �Xn

i¼1
yi � xij j (4.1)

Mean Squared Error
mseðx; yÞ ¼ 1

n

� �Xn

i¼1
ðyi � xiÞ2 (4.2)

Root Mean Squared Error
rmseðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

� �Xn

i¼1
ðyi � xiÞ2

s
(4.3)

R-Squared
rsqðx; yÞ ¼ 1�

Pn
i¼1 ðyi � xiÞ2Pn
i¼1 ð�x � xiÞ2

(4.4)

Figure 4 Performance metric plots of the average of multiple individual tests. Full-size DOI: 10.7717/peerj.13425/fig-4
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The initial features were examined, and morphometrics alone performed better than the
choice of only demographics for all performance metrics. This implication leads to another
explanation that only demographics (subplots in the middle row) are not sufficient.
Basically, a few features may not be sufficient to minimize errors. Even though the feature
size increased, the interaction between the features also increased, bringing the hybrid
set evaluation to the most efficient point. As a mark, the proposed algorithm was not
affected by dimensionality and continues to function thoroughly. Hence, the effect of
utilizing additional and supplementary morphometrics extracted using FreeSurfer on
DUCF is explicitly demonstrated.

On the other hand, including morphometrics in the initial features worsened the results
as the BNC increases for the MAE performance metric. Moreover, the error rate of the
correlation-based equations increased abruptly after a certain small number of BNC.
The best MAE results were achieved with less BNC and the hybrid set of features. In terms
of the MSE and RMSE, the best outcome appeared when using the hybrid set of features,
particularly for distance-based similarities. The 1-norm distance, MAN, strictly
outperformed the others, because it is observed that the black-colored lines reach the most
efficient points when employing the corresponding performance metrics with the hybrid
set of features. The enhancing trend for both distance-based similarities appeared to
improve a certain BNC threshold. After this point, the slope reverses.

According to these performance metrics and configurations, the algorithms reached
the most effective points for approximately less than ten BNCs. The exact BNCs are
discussed later in the table of results. The behavior of the last performance metric, R2,
owing to the BNC was similar to the squared error metrics MSE and RMSE. As diverse
behaviors are observed in the performance of related metrics, it can be concluded that
performance metrics should be examined together instead of focusing on only one of them.

BNC-oriented DUCF performance results and reference results obtained using other
missing data imputation methods in the literature were inspected accordingly. Selected
best-performing test results6 were filtered in the color-mapped Table 5. Each row of the
table represents an imputation method with a specific configuration and corresponding
mean results of the same iteration in the repeated test package. The overall sorted results
are the summation-based combination of the performance metric rankings owing to
the instability of the column shades of any metric. For instance, DUCF approaches
with low BNCs performed the best in terms of MAE. Another example is the case for
RegEM and LRMC, which have more green shading for RMSE and R2. In the plot
interpretations, it was stated that the enhancing trend might stop after a certain BNC
threshold. However, in the table of results, this interpretation can be inferred as a deviation
in the user data.

Based on the colorized results in the table, each performance metric provided a
prediction bias. Therefore, the most convenient range for the reliability scale, in
accordance with the generated model, should be considered as the greenest shade in each
column. Variable thresholds were determined through two-sigma of all performance
metrics. Thus, we specified the reliability scale in two parts: trusted and moderate. Utilizing

6 The complete detailed results of the
whole tests can be found in the
DetailedImputationsResults tab of the
supplementary material available at
GitHub: https://github.com/savasokyay/
Dementia-Related-User-Based-
Collaborative-Filtering/blob/main/
supplementaryMaterial-DUCF.xlsx.
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denormalized error rate values, these thresholds can be determined, as summarized in
Table 6.

Considering all of these highlights, the outcomes of the DUCF configurations are strictly
better than those of the simple imputation approaches, as expected, and are quite
analogous to the state-of-the-art methods. Further, DUCF outperformed the other
imputation techniques when assessing the MAE and the combination of the performance
metric rankings. Additionally, DUCF with suitable configurations, first and foremost, the
BNC parameter in a similarity equation, was preferable to other techniques owing to its

Table 5 Selected best-performing test results ordered by the summation-based combination of the performance metric rankings.

Imputation technique Feature vector set Similarity measurement BNC MAE RMSE R2

DUCF Hybrid Set of Features MAN 6 0.06933 0.09196 0.92235

DUCF Hybrid Set of Features MAN 7 0.06968 0.09194 0.92232

DUCF Hybrid Set of Features MAN 5 0.06888 0.09208 0.92225

RegEM Hybrid Set of Features - - 0.06988 0.08956 0.92546

DUCF Morphometrics Features EUC 7 0.07000 0.09192 0.92232

DUCF Morphometrics Features EUC 6 0.06968 0.09197 0.92228

DUCF Morphometrics Features MAN 5 0.06921 0.09211 0.92210

DUCF Hybrid Set of Features MAN 8 0.06998 0.09194 0.92225

LRMC Hybrid Set of Features - - 0.07109 0.09216 0.92155

DUCF Hybrid Set of Features EUC 6 0.07155 0.09360 0.91945

DUCF Morphometrics Features EUC 2 0.06778 0.09808 0.91280

DUCF Hybrid Set of Features MAN 2 0.06780 0.09851 0.91236

DUCF Morphometrics Features EUC 1 0.06670 0.10956 0.89329

DUCF Morphometrics Features COS 1 0.06634 0.11000 0.89831

DUCF Hybrid Set of Features MAN 1 0.06714 0.10987 0.89339

DUCF Hybrid Set of Features PCC 1 0.06633 0.11064 0.89514

DUCF Hybrid Set of Features MRC 1 0.06626 0.11107 0.89418

Attribute Median Missing Features - - 0.07683 0.10673 0.89698

Attribute Mean Missing Features - - 0.08305 0.10335 0.90032

Attribute Winsorized Mean Missing Features - - 0.08325 0.10423 0.89998

Zero Value Missing Features - - 0.44131 0.54957 -

Note:
Existing methods are highlighted with a gray background color.

Table 6 Predefined thresholds for the reliability scale.

Clinical test type ±Trusted threshold ± Moderate threshold

MMSE 2.162 2.945

GDS 1.179 1.606

CDR 0.393 0.535

NIQ 2.850 3.882

FAQ 2.948 4.016

Okyay and Adar (2022), PeerJ, DOI 10.7717/peerj.13425 14/19

http://dx.doi.org/10.7717/peerj.13425
https://peerj.com/


efficient computation capability. Consequently, the proposed methodology can be used to
reduce possible error rates and improve the reliability scale.

CONCLUSION
Neuroimaging studies and clinical diagnosis may strain when some morphometrics or
demographics, particularly clinical test score attributes, are missing or incorrect. In this
study, we imputed the missing clinical test score values by unsupervised dementia-related
user-based collaborative filtering to facilitate the studies of neuroimaging and medical
informatics researchers, particularly medical doctors. Validation and analysis of the
differences between clinical test scores and automatically generated test scores were
used as a scale for the confidence of clinical tests. We proposed a reliability scale for
computer-aided clinical brain activity test scoring. This may prevent future errors in
prediagnoses based on clinical tests and/or visually inspected MRI scans. Furthermore, the
effect of utilizing FreeSurfer morphometrics over neuroimaging studies was strengthened
by questioning various feature inputs. The input vectors were optimized using several
normalization strategies. The detailed configurations of DUCF were evaluated and
compared to state-of-the-art imputation techniques in the literature, and its performance
was demonstrated. Certain collaborative filtering configurations outperformed other
imputation techniques. Then, proper BNCs that could be parameterized directly for
further analyses were procured.

The outcomes of the proposed imputation methodology led to some points and are
generally promising. This is preferable, particularly because of its computational
performance and dimensionality robustness. Consequently, a decision support system
with a reliability scale was proposed to impute and verify clinical test scores. Future studies
should compare the outcomes of this study with those of incomplete data performance.
Dementia-related collaborative filtering with deep-learning techniques may also be
considered as a draft plan.
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